

WHO
(World Health Organization)

President: Rosario Clavijo Giraldo

Vice-president: Martin Villa Molina

who@columbus.edu.co

Index

1. Letters from the Chair	3
1.1. Letter from the President	3
1.2. Letter from the Vice-President	3
2. Introduction to the Committee	3
2.1. History	3
2.2. Purpose and Objectives	3
2.3. Relevant Information	3
3. Topic A:	4
3.1. Introduction to the Topic	4
3.2. History	4
3.3. Present Situation	4
3.4. Previous Resolutions	4
3.5. Expectations for the Debate	4
3.6 Useful Resources	5
4. Topic B:	5
4.1. Introduction to the Topic	5
4.2. History	5
4.3. Present Situation	5
4.4. Previous Resolutions	5
4.5. Expectations for the Debate	5
4.6. Useful Resources	6
5. QARMAS	6
5.1. Topic A	6
5.2. Topic B	6
6. Bibliography	6

6.1. Topic A	6
6.2. Topic B	6

1. Letters from the Chair

1.1. *Letter from the President*

Honorable delegates,

First and foremost I would like to extend a warm welcome to the World Health Organization committee for COSMUN 2025. In my experience, the world health organization is a vastly entertaining committee that will provide an enriching experience for all those who chose to actively participate. As you may know, this committee is in charge of closely monitoring and protecting the general well being of the global population, therefore the decisions taken within it have a drastic impact on the health of millions of people. As delegates we participate in models not only as a form of entertainment but also to feel that we have a say in our futures and are capable of making an impact on the world. Therefore I invite you to carefully consider the decisions that will be taken during the committee as the scenarios played out represent plausible solutions to real life problems.

However this is not to say that President Villa and I won't let you take some liberties. We aspire for the debate to be dynamic and entertaining and for you to leave with a wonderful experience knowing that you enjoyed your time in the committee. Furthermore I urge you to thoroughly investigate the themes and wholeheartedly embrace your delegations role as this will provide a more dynamic and enjoyable debate.

Ultimately, I hope you take the time to enjoy COSMUN 2025 to the fullest and seize the opportunity to grow both as a delegate and a person. I deeply encourage you to meet new people and explore the wonderful experience COSMUN has to offer.

Best,

President Clavijo.

1.2. Letter from the Vice-President

Honorable delegates,

I welcome you to the World Health Organization committee in the COSMUN 2025 external model. I am Martin Villa, a senior at The Columbus School and I am honored to be the Vice-President of your committee during this year's COSMUN. I am excitedly looking forward to seeing what innovative solutions are presented to the committee by all of you, what arguments and rhetorical strategies are used to justify them during moderated caucuses, and what promises and compromises you make during unmoderated caucuses in order to build your blocks.

I recognize that in addition to engaging in thought-provoking debates, being able to meet new people from many different schools, not only from Medellin but also from other countries, is a crucial part of the Model United Nations experience, acknowledging this, during the 3 days that COSMUN lasts, President Clavijo and I will try our best to ensure that the atmosphere in the committee is friendly and cordial while keeping the academic nature that makes MUNs special.

Regardless of whether this is your first or tenth MUN conference, I invite you to make the best possible use of these 3 days to advance your knowledge of the subjects being discussed,

perfect your public speaking skills, and make new friends who are outside of your typical social circle.

Sincerely,

Vice President Villa

2. Introduction to the Committee

2.1. History

The history of the World Health Organization dates back to the early days of the United Nations in April 1945, when, in a conference in San Francisco, the nations of the world were discussing how the new supranational organization would be structured. During this time, the Chinese and Brazilian delegations proposed that the United Nations include health as one of its major aims. In 1946, representatives from 61 nations signed the constitution of the World Health Organization, which was formalized as an agency of the United Nations under Article 57 of the organization's Charter. Finally, on April 7th, 1948, the WHO was formally established as an agency of the UN under the supervision of the United Nations Economic and Social Council. On June 24th of that year, the first-ever assembly of the World Health Organization took place in Geneva, Switzerland.

2.2. Purpose and Objectives

Since its inception, the World Health Organization has been tasked with promoting universal healthcare coverage, dealing with health emergencies across the world, improving health and well-being for all peoples, as well as addressing mental health problems, noncommunicable diseases, antimicrobial resistance among many other topics surrounding the

health of people all around the world. The organization coordinates with state and local government, Non-profit organizations, hospitals, local communities, healthcare providers, and many other stakeholders to expand healthcare access and improve the quality of life for people all around the world.

2.3. Relevant Information

The World Health Assembly is the body that makes decisions in WHO. The delegation attended from all WHO member states in order to discuss matters presented by the executive board. The assembly determines the policies in the organization and supervises financial policies which in turn include reviewing and approving the proposed budget. The executive board is made up of 34 qualified members who are elected for three-year terms. The board meeting is held once a year in January when the members agree upon an agenda for the World Health Assembly and the resolutions that should be taken into consideration. Moreover, the board has a second shorter meeting in May-June which serves as a follow-up to the first meeting. Fundamentally the board implements the policies of the assembly and facilitates its work.

3. Topic A: Addressing the Potential for Harm of Genetically Engineered Diseases

3.1. Introduction to the Topic

In the past few decades, genetic engineering has allowed humanity to artificially create what are called Genetically Modified Organisms (GMOs). These are creatures whose genes have

been altered to have some qualities humans find beneficial, be it making them grow faster, becoming fatter, changes in nutrients or behavior, etc. Overall, GMOs are often credited as the main reason why humanity has been able to so drastically expand its population without mass starvation. However, this same technology can be used to alter the genes of viruses, making them more contagious, more deadly, make them more prone to impact certain groups or change their behavior in another way. This type of research is called Gain-of-function research or GoFR.

Most of the time, this research is conducted without ill intent, and for purposes such as facilitating testing for new treatments, revealing targets for possible new diseases, or as potential cures to some currently incurable diseases. For example, altering a virus that could previously only infect humans also to be able to infect mice in order to test a vaccine would be gain-of-function research. Regardless, even when conducted with good intentions, this research is dangerous as by changing the virus to be more deadly or transmissible there is always a possibility of the newly enhanced virus escaping the lab and becoming a danger to the general public, which has led to many countries implementing regulations on this research to ensure it is safe, with the USA even imposing a moratorium on this type of research in 2014 before lifting it in 2017.

This is not to say that this research is *always* performed with good intentions, indeed, some of these viruses can be engineered to be powerful bioweapons with increased survivability, virality, infectivity, and drug resistance. In addition to this, they also possess some qualities lacking in traditional bioweapons which can make them particularly effective; one of these is that while traditional bioweapons must be produced in large quantities in order to be effective, genetically engineered viruses only need a few specimens to be delivered as they will reproduce on their own; another risk is that of stealth viruses, viruses which remain dormant for long periods of

time until some outside condition triggers them, at which point they begin exhibiting their, potentially deadly, symptoms. In warfare, these viruses could be used on a country's population, and the trigger could be used as a threat or activated at some later date. Finally, while still completely hypothetical, with future technology it may be possible to create a virus tailored to one specific person's genome, meaning that a virus that would be completely symptomless in most of the population, but would be deadly to the target.

3.2. History

GMOs have become a prevalent part of human history; through genetically modified crops humans have found ways to produce refined crops to yield a more desirable product.

Nevertheless, with technological advances, the discourse of genetically modified viruses and “designer” vaccines has become more relevant.

GMOs gained popularity around 1922 after the production of the first hybrid corn variety. This first genetic intervention upon certain crops led farmers and manufacturers to experiment with a variety of methods to alter the organism's DNA. For instance, in 1940 plant breeders learned to use chemicals and radiation to randomly change plants' DNA structure. Furthermore in 1953 scientists James Watson and Francis Crick discovered the structure of DNA. This discovery provided the framework necessary for all complex genetic research techniques and thus increased the efficiency of the advances made in the field. For instance, the discovery provided the groundwork needed for Herbert Boyer and Standly Cohen's genetic engineering development in 1973 in which they inserted DNA from one bacteria into another.

After significant advances, products like squash, tomatoes, soybeans, etc. that were produced through genetic engineering became available to the public, resulting in the World Health Organization (WHO) and the Food and Agriculture Organization (FAO) developing guidelines to determine the safety of GMOs.

However genetic engineering is not only limited to agriculture, it can also be applied to vaccines and viruses. For instance, Gain-of-function research techniques focus on modifying certain aspects of a cell or a protein in order to enhance or eliminate a certain ability or function. Through GOF research, scientists can manipulate cells and bacteria in order to come closer to finding cures for highly infectious and deadly diseases.

Gain of function research has made significant advances in finding cures for complex diseases such as cancer. Furthermore, genetical treatment for viruses has proven successful in multiple animal trials for viruses such as herpes simplex viruses, lentiviruses, retroviruses, and adenoviruses. Nevertheless, research for genetic modification of viruses seems inconclusive as it is still in the preliminary stages and its long-term effects are unknown. Because of this, there are no clear precedents for genetically engineered viruses.

It is important to note that genetic engineering of viruses may not only work in favor of curing complex diseases but it has also been stipulated that it may be used by governments and insurgent groups to generate epidemics and induce heinous acts.

Therefore it is the responsibility of the World Health Organization to address these concerns and create guidelines and precautions surrounding genetically engineered viruses to maintain the wellbeing of the global population.

3.3. Present Situation

Currently, there are no international regulations regarding Genetically Engineered Diseases or Viruses, meaning that every country is free to have as many or as few restrictions as they desire. This has led to most countries neglecting to establish regulations around this research which leaves the door open to both malicious actors, both state and non-state, to develop harmful diseases either as a means to achieve some geopolitical objective or by accident while attempting to develop a virus in order to achieve another goal.

This lack of regulation poses biosecurity risks to the whole of humanity as without safeguards, genetically engineered viruses could run rampant and cause great damage to humanity.

3.4. Previous Resolutions

Because the research for genetically modified viruses is still in its preliminary stages, there is no clear precedent for them, nevertheless, regulations regarding GMOs in general and GOF research have been induced by entities such as the United States government:

1. S.3012 - Viral Gain of Function Research Moratorium Act

- a. The S.3012 bill banned universities and research institutions from performing gain-of-function research. The bill states that gain of function reason may confer greater transmissibility and the ability to make a person sicker (pathogenicity) top viruses such as MERS, Influenza, or SARS. Furthermore it prohibits the research that involves making pathogens more dangerous in order to test their possible cures.

Nevertheless, international policies regarding regulations surrounding genetically engineered viruses are not concrete. Since this scope of research is relatively new, establishing guidelines is an urgent concern, especially taking into account the COVID 19 pandemic. A concrete

framework regarding Genetically engineered viruses is necessary in order to prevent future epidemics and international health concerns.

3.5. Expectations for the Debate

Genetically engineered viruses are still an emerging technology and all current use cases, both positive and negative, still remain purely in the realm of the hypothetical. They can create great opportunities for abundance, the keys to curing currently incurable diseases, but also hold the potential for plagues far deadlier than anything the world has ever seen used to completely eradicate nations. All delegates need to understand all the potential they have for both good and bad and when creating regulations, make sure to put feasible restrictions on the research in order to prevent a new bubonic plague, whether intentional or not, while also leaving room for the positive research to take place. We urge you to thoroughly research your countries' positions to ensure that your proposed solutions are in line with their policies.

3.6 Useful Resources

Dujs, & Dujs. (2013, March 10). *Genetically engineered bioweapons: A new breed of weapons for Modern Warfare*. Dartmouth Undergraduate Journal of Science. <https://sites.dartmouth.edu/dujs/2013/03/10/genetically-engineered-bioweapons-a-new-breed-of-weapons-for-modern-warfare/>

Dr. Osman Shabir, P. (2021, March 10). How could a virus be genetically engineered?. News Medical.

<https://www.news-medical.net/health/How-Could-a-Virus-be-Genetically-Engineered.aspx>

Bhattacharya, S. (2004, June 1). Genetically-modified virus explodes cancer cells. *New Scientist*.

<https://www.newscientist.com/article/dn5056-genetically-modified-virus-explodes-cancer-cells/>

Biological weapons convention. United Nations Office for Disarmament Affairs. (n.d.).

<https://disarmament.unoda.org/biological-weapons/>

Engineered viruses are the new biological weapons, here's what you need to know.

YouTube. (2019, September 15).

<https://youtu.be/NBBIfGaml0c?si=px6wbQnJFkNIEtm2&t=107>

Classified State Department documents credibly suggest COVID-19 lab leak, Wenstrup pushes for declassification. United States House Committee on Oversight and Accountability. (2024, May 8).

<https://oversight.house.gov/release/classified-state-department-documents-credibly-suggest-covid-19-lab-leak-wenstrup-pushes-for-declassification/>

4. Topic B: Mandatory Vaccine Policies and Protocols for Future Pandemics

4.1. Introduction to the topic

The Covid-19 pandemic was an unprecedented event that heavily impacted the course of the world in both economic and social factors. With the pandemic, the discourse regarding mandatory vaccination and other biosecurity policies became crucial in order to maintain the world's general wellbeing. However, this became highly controversial as individuals argued that mandatory vaccine policies and social distancing infringed upon their bodily autonomy and general rights. Because of this "mandatory vaccine policies" were rarely compulsory. Thus,

while some activities and events required vaccination in order for individuals to participate, there was no legal framework that deemed vaccines as obligatory.

Nonetheless, the need for a legally compelling framework is largely debated as it can be argued that their ethical justification is weakened as less intrusive protocols that reduce transmission rates are implemented. Furthermore, it is crucial to acknowledge limiting factors in accessibility and people's concerns regarding vaccination when discussing mandatory policies since those impacted by the mandates expect to have access to reliable vaccines without any costs. Multiple countries have made mandatory policies for health care and public workers as well as school-age children because of their constant proximity to multiple people. However, the lack of regulations for the general public permitted the widespread propagation of the virus which endangered the lives of millions of people.

However mandatory vaccine policies are not the only concern regarding future pandemics. The Covid -19 pandemic exposed the lack of preparation of countries and multilateral organizations in addressing highly contagious viruses. As stated earlier, the pandemic was a highly unprecedented event that took the world by surprise, therefore the lack of preparation enabled the mass spread of the virus. Because of this, it is necessary that the World Health Organization creates a framework that prepares countries for similar events in order to protect the general public and ensure biosecurity protocols are strictly followed.

4.2. History

From the Plague of Justinian, which spread havoc within the Byzantine empire, to the black death of the 14th century which killed over 30% of Europe's population, to smallpox in the

Americas, which decimated the native populations, population, to COVID-19, which completely reshaped the world in countless ways, pandemics have been a constant in human history.

The first modern pandemic was the Influenza Pandemic of 1918, also known as the Spanish Flu, this disease spread to almost every inhabited corner of the world and killed over 25 million people. Regrettably, due to the lack of vaccines and antibiotics, governments had to rely on measures such as isolation, quarantine, and public hygiene measures, which are not as effective and resulted in more deaths than would have happened if pharmaceutical means were available.

As the 20th century progressed, many countries around the world began weighing the positives and negatives of mandatory vaccination on their populations, leading to many of them, such as Germany, the United States, and Italy, implementing mandatory vaccination policies, particularly for children. At the same time, some countries, such as France, believed that the negatives, such as the infringement on their populations' freedoms outweighed the positives of these policies.

Despite these vaccination efforts, another pandemic happened in the form of the 1968 flu pandemic, also known as the Hong Kong Flu. Just like the Spanish flu, it was caused by a strain of influenza. Starting in Hong Kong, this disease quickly spread around the world and caused between 1 and 4 million deaths. Despite its low death toll, it spread quickly, with 500,000 cases being reported within two weeks of its original emergence in Hong Kong. Just like many pandemics, both before and afterward, it was an airborne virus and its rapid spread was facilitated by our increasingly globalized world.

The most recent pandemic and the biggest one since the Spanish Flu has been the Coronavirus pandemic, which, after starting in Wuhan, China, quickly spread around the world, leading to the World Health Organization to declare a Public Health Emergency of International Concern (PHEIC) in January of 2020 and to declare the virus a pandemic in March of the same year. This pandemic caused a series of completely unprecedented measures being taken by countries worldwide in order to reduce the spread, including but not limited to quarantines, lockdowns, travel restrictions and social distancing, resulting in severe economic harm to the global economy. Fortunately, vaccines were developed quickly and international cooperation on initiatives such as COVAX led to most countries having access to the vaccines. The lessons learned from this pandemic will shape future responses to pandemics for decades to come and promote a more resilient global health infrastructure to deal with viral diseases.

The response to Covid-19 brought the debate about mandatory vaccination policies back to prominence, with many countries implementing policies requiring that their populations take the vaccine against Covid-19 in an attempt to achieve herd immunity. An example of this is Australia, which implemented a "No Jab, No Pay", requiring families on welfare to vaccinate their children if they wish to continue receiving government benefits. On the other hand, some countries, such as the United Kingdom, have opted to instead run public information campaigns encouraging people to get vaccinated in place of mandatory vaccination programs, believing these interfere with their people's rights.

4.3. Present Situation

After the steady decline of the Covid-19 pandemic, biosecurity protocols have panned onto a second plane and become irrelevant in most spaces. Consequently, the discourse surrounding mandatory vaccine policy and preparations for future pandemics has been pushed aside. For instance, in countries such as the United States vaccine mandates have been reduced to the discretion of private entities when hiring new employees. Similarly, countries such as Austria which once implemented mandatory covid vaccine policies have discarded them as the pandemic subsides. Nevertheless, the underlying safety concern remains whether vaccine policies are necessary as safeguards for future pandemics. While some argue that vaccine policies inflict upon their personal rights and bodily autonomy, others state that by ensuring mandatory vaccines the impact of arising illnesses may be minimized. Ultimately the ongoing conversation is far from coming to an end and it is the World Health Organization's responsibility to attest that a concrete and effective solution is given in order to maintain the general well-being.

4.4. Previous Resolutions

1. International Health Regulations:

Adopted in 2005 by the World Health Organization, these legally binding regulations establish the rights and responsibilities of countries in case of a public health emergency of international concern (PHEIC), defined by the regulations as an event that poses a serious threat to public health is unusual or unexpected, has a large potential for international spread and could lead to significant interference with international travel or trade. In addition to this, the regulations also require countries to create a focal point for communications with the World Health Organization, have surveillance systems with the capacity to detect public health events in a timely manner, continuously assess public health events, and report to WHO through their focal point any that may result in a PHEIC.

2. Pandemic Prevention, Preparedness, and Response Accord:

Written in the aftermath of the Covid-19 Pandemic, this accord aims to improve preparedness, and prevention for future pandemics, as well as to ensure a better and fairer public health response to those pandemics. A key principle of the accord is to ensure equitable access to vaccines, personal protective equipment, and healthcare services for all countries. It is important to note that this accord is still being negotiated and subject to change.

3. World Health Assembly Resolution 63.1

Passed in 2010, this resolution focuses on the Influenza virus, emphasizing the importance of pandemic preparedness, especially in developing countries. It also recalled the importance of the international community coming together to ensure all countries can effectively prevent, detect, and respond to pandemics effectively.

4.5. Expectations for the Debate

The World Health Organization is expected to deliver policies which will appropriately protect the general well-being and look out for the safety and protection of all individuals. Therefore through the debate, it is expected that delegates treat the topic with the utmost respect and seriousness in order to create cost-effective, affordable, and beneficial policies that will prepare the world for future pandemics and assess the necessity for legal frameworks regarding mandatory vaccine policies. Since this topic is highly controversial it is expected that delegates are able to argue their position in a respectful but dynamic manner that does not highly divert from the topic at hand. Once again, we urge you to thoroughly research your delegation position in order to bring the most accurate representation to the committee

4.6. Useful Resources

World Health Organization. (2005, January 1). International Health Regulations (2005).

<https://www.who.int/publications/item/9789241580410>

5. QARMAS

5.1. Topic A

1. Does your delegation have any regulations around Genetically Modified Organisms? If so, what do they require?
2. Does your delegation have any regulations around Genetically Modified Viruses? If so, what do they require?
3. Has your delegation participated in or provided resources to the development of genetically engineered viruses?
4. Has your delegation had any issues with genetically engineered viruses in the past?
5. What is your delegation's stance on the international sharing of data and research findings related to genetically engineered viruses?

5.2. Topic B

1. Has your delegation implemented mandatory vaccine policies? If so, which policies?
2. How has your delegation prepared for future pandemics?
3. What was your delegation's stance on covid vaccines and biosecurity protocols during the pandemic?
4. What is your delegation's stance regarding mandatory vaccine policies?

5. What type of vaccines were implemented in your delegation during the pandemic?

6. Bibliography

6.1. *Introduction to the Committee*

World Health Organization. (n.d.). History. World Health Organization.

<https://www.who.int/publications/journals/bulletin/about/history>

Timeline of the history of the World Health Organization (WHO). O'Neill. (2023, April 17).

<https://oneill.law.georgetown.edu/publications/timeline-of-the-history-of-the-who/>

World Health Organization. (n.d.-b). *What we do*. World Health Organization.

<https://www.who.int/about/what-we-do#:~:text=WHO%20works%20 worldwide%20to%20 promote,better%20health%20and%20 well%Being.>

Executive Board. (n.d.). <https://www.who.int/about/accountability/governance/executive-board>

World Health Assembly. (n.d.).

<https://www.who.int/about/accountability/governance/world-health-assembly>

6.2. *Topic A*

Kaiser, J. (2014, October 17). U.S. halts funding for new risky virus studies, calls for voluntary moratorium. *Science*.

<https://www.science.org/content/article/us-halts-funding-new-risky-virus-studies-calls-voluntary-moratorium>

Dujs, & Dujs. (2013, March 10). *Genetically engineered bioweapons: A new breed of weapons for Modern Warfare*. Dartmouth Undergraduate Journal of Science. <https://sites.dartmouth.edu/dujs/2013/03/10/genetically-engineered-bioweapons-a-new-breed-of-weapons-for-modern-warfare/>

Biological weapons convention. United Nations Office for Disarmament Affairs. (n.d.).
<https://disarmament.unoda.org/biological-weapons/>

Unit, B. (2021, May 18). About the Protocol. The Biosafety Clearing-House (BCH).
<https://bch.cbd.int/protocol/background>

Dr. Osman Shabir, P. (2021, March 10). How could a virus be genetically engineered?. News Medical.

<https://www.news-medical.net/health/How-Could-a-Virus-be-Genetically-Engineered.aspx>

Bhattacharya, S. (2004, June 1). Genetically-modified virus explodes cancer cells. New Scientist.
<https://www.newscientist.com/article/dn5056-genetically-modified-virus-explodes-cancer-cells/>

Bertuzzi, V. D., Stefano. (2021, diciembre 23). Gain-of-function research advances knowledge and saves lives. STAT.
<https://www.statnews.com/2021/12/23/gain-of-function-research-advances-knowledge-and-saves-lives/>

Chan, V. S. W. (2006). Use of genetically modified viruses and genetically engineered virus-vector vaccines: Environmental effects. Journal of Toxicology and Environmental Health. Part A, 69(21), 1971-1977. <https://doi.org/10.1080/15287390600751405>

Dertzbaugh, M. T. (1998). Genetically engineered vaccines: An overview. Plasmid, 39(2), 100-113. <https://doi.org/10.1006/plas.1997.1329>

Gurumurthy, C. B., Quadros, R. M., Richardson, G. P., Poluektova, L. Y., Mansour, S. L., & Ohtsuka, M. (2020). Genetically modified mouse models to help fight COVID-19. Nature protocols, 15(12), 3777-3787. <https://doi.org/10.1038/s41596-020-00403-2>

Keating, G. M., & Noble, S. (2003). Recombinant hepatitis B vaccine (Engerix-b): A review of its immunogenicity and protective efficacy against hepatitis B. *Drugs*, 63(10), 1021-1051.
<https://doi.org/10.2165/00003495-200363100-00006>

Lowen, A., & Lakdawala, S. (2023, mayo 8). Gain-of-function research is more than just tweaking risky viruses – it's a routine and essential tool in all biology research. *The Conversation*.

<http://theconversation.com/gain-of-function-research-is-more-than-just-tweaking-risky-viruses-it-s-a-routine-and-essential-tool-in-all-biology-research-202084>

PhD, D. O. S. (2020, julio 20). How could a virus be genetically engineered? *News-Medical*.
<https://www.news-medical.net/health/How-Could-a-Virus-be-Genetically-Engineered.aspx>

Research & innovation | easa. (s. f.). Recuperado 9 de julio de 2024, de
<https://www.easa.europa.eu/en/domains/research-innovation/research>

Sciences, B. on L., Studies, D. on E. and L., Committee on Science, T., Affairs, P. and G., Policy, B. on H. S., Council, N. R., & Medicine, I. of. (2015a). Potential benefits of gain-of-function research. En *Potential Risks and Benefits of Gain-of-Function Research: Summary of a Workshop*. National Academies Press (US). <https://www.ncbi.nlm.nih.gov/books/NBK285583/>

Sciences, B. on L., Studies, D. on E. and L., Committee on Science, T., Affairs, P. and G., Policy, B. on H. S., Council, N. R., & Medicine, I. of. (2015b). Potential benefits of gain-of-function research. En *Potential Risks and Benefits of Gain-of-Function Research: Summary of a Workshop*. National Academies Press (US). <https://www.ncbi.nlm.nih.gov/books/NBK285583/>

Sciences, B. on L., Studies, D. on E. and L., Policy, B. on H. S., Division, H. and M., Committee on Science, T., Affairs, P. and G., & National Academies of Sciences, E. (2016a). International policy. En Gain-of-Function Research: Summary of the Second Symposium, March 10-11, 2016. National Academies Press (US). <https://www.ncbi.nlm.nih.gov/books/NBK373318/>

Sciences, B. on L., Studies, D. on E. and L., Policy, B. on H. S., Division, H. and M., Committee on Science, T., Affairs, P. and G., & National Academies of Sciences, E. (2016b). Introduction. En Gain-of-Function Research: Summary of the Second Symposium, March 10-11, 2016. National Academies Press (US). <https://www.ncbi.nlm.nih.gov/books/NBK373321/>

Stephenson, J. R. (2001). Genetically modified viruses: Vaccines by design. Current Pharmaceutical Biotechnology, 2(1), 47-76. <https://doi.org/10.2174/1389201013378815>

Title tbd. (s. f.). Recuperado 7 de julio de 2024, de
https://www.fda.gov/apology_objects/abuse-detection-apology.html

6.3. *Topic B*

COVID-19 and mandatory vaccination: Ethical considerations.
<https://iris.who.int/bitstream/handle/10665/354585/WHO-2019-nCoV-Policy-brief-Mandatory-vaccination-2022.1-eng.pdf?sequence=1>

Bardosh, Kevin, et al. «The Unintended Consequences of COVID-19 Vaccine Policy: Why Mandates, Passports and Restrictions May Cause More Harm than Good». *BMJ Global Health*, vol. 7, n.º 5, mayo de 2022, p. e008684. [gh.bmj.com](https://doi.org/10.1136/bmjgh-2022-008684), <https://doi.org/10.1136/bmjgh-2022-008684>.

«Countries Making COVID-19 Vaccines Mandatory». *Reuters*, 31 de diciembre de 2021. [www.reuters.com](https://www.reuters.com/business/healthcare-pharmaceuticals/countries-making-covid-19-vaccines-mandatory-2021-08-16/), <https://www.reuters.com/business/healthcare-pharmaceuticals/countries-making-covid-19-vaccines-mandatory-2021-08-16/>.

United Nations. (2021, February). Security Council Resolution 2565. <https://documents.un.org/doc/undoc/gen/n21/053/90/pdf/n2105390.pdf?token=pfhx4adWqFJfxmoNCI&fe=true>

World Health Organization. (2005, January 1). International Health Regulations (2005). <https://www.who.int/publications/i/item/9789241580410>

WHO. (n.d.). WHA63-1. In *SIXTY-THIRD WORLD HEALTH ASSEMBLY* (pp. 1–2). Retrieved from https://apps.who.int/gb/ebwha/pdf_files/WHA63-REC1/WHA63_REC1-en.pdf.

Encyclopædia Britannica, inc. (2024, July 21). *Influenza pandemic of 1918–19*. Encyclopædia Britannica. <https://www.britannica.com/event/influenza-pandemic-of-1918-1919>

Encyclopædia Britannica, inc. (n.d.). 1968 flu pandemic. Encyclopædia Britannica. <https://www.britannica.com/event/1968-flu-pandemic>

